

**Efficient Cross-Coupling Reactions of Aryl Chlorides and Bromides with
Phenyl or Vinyltrimethoxysilane Mediated by a Palladium/Imidazolium
Chloride System**

Hon Man Lee and Steven P. Nolan*

Department of Chemistry, University of New Orleans
New Orleans, Louisiana 70148

Supporting Information

Mailing Address: Department of Chemistry, University of New Orleans
New Orleans, LA 70148

Telephone: (504) 280-6445

FAX: (504) 280-6860

Email: snolan@uno.edu

General Information

- All aryl halides (Aldrich), TBAF (1.0 M in THF, Aldrich), 1,4-Dioxane (anhydrous, Aldrich), Pd(OAc)₂ (Strem) and Pd₂(dba)₃ (Strem) were used as received. Flash chromatography was performed on silica gel 60 (230-400 mesh) (Natland International Corporation).
- ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a Varian-300 MHz or Varian-400 MHz NMR spectrometer at ambient temperature in CDCl₃ (Cambridge Isotope Laboratories, Inc.).
- All reactions were carried out under an atmosphere of argon in oven-dried-glassware with magnetic stirring, unless otherwise indicated.
- 1,3-Bis(2,6-diisopropylphenyl)imidazolium chlorides (**1**) and 1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride (**2**) were prepared according to reported procedures: (a) Arduengo, A. J. III. US patent 5 077 414, 1991; (b) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. manuscript in preparation.
- The identity of every product was confirmed by comparison with literature spectroscopic data: 4-Methylbiphenyl,^{1,2} 4-Carbomethoxybiphenyl,³ 4-Cyanobiphenyl,⁴ 4-Methoxybiphenyl,² 2-phenylpyridine,⁵ biphenyl⁶ and 4-acetylstyrene.⁷

Cross-Coupling Reaction of Aryl Halides and Phenyltrimethoxysilane.

General procedure: Under an atmosphere of argon 1,4-dioxane (3 mL), aryl halide (1.0 mmol), phenyltrimethoxysilane (2.0 mmol) and TBAF (2 mL, 2.00 mmol) were added in turn to a screw-capped vial with a septum charged with Pd(OAc)₂ (6.7 mg, 0.03 mmol), **1** (13 mg, 0.03 mmol), and a magnetic stirring bar. The vial was placed in an 80 °C oil bath and stirred. The reaction was monitored by GC. In some cases, the yields were determined by GC using biphenyl as internal standard. The mixture was then allowed to cool to room temperature. The reaction was quenched (30 ml H₂O) and extracted (4 x 30 mL Et₂O). The organic layers were dried over MgSO₄, concentrated in vacuo and then purified by flash chromatography. All coupling products were found to be identical by ¹H NMR with literature data.

Cross-Coupling Reaction of 4-Bromo- or 4-chloroacetophone and Vinyltrimethoxysilane.

General procedure: A similar procedure as above was used. Vinyltrimethoxysilane (2.0 mmol) was used. The reaction was monitored by GC. After complete consumption of the aryl halide, the mixture was allowed to cool to room

temperature. The reaction was quenched (50 ml H₂O) and extracted (4 x 50 mL Et₂O). The organic layers were dried over MgSO₄, concentrated in vacuo and then purified by flash chromatography. The coupling product was found to be identical by ¹H NMR with literature data.

References

1. Schoervarrs, A. M.; Kruizinga, W.; Zijlstra, R. W. J.; Veldman, N.; Spek, A. L.; Feringa, B. L. *J. Org. Chem.* **1997**, *62*, 4943.
2. Rao, M. S. C.; Rao, G. S. K. *Synthesis* **1987**, 231.
3. Barba, I.; Chinchilla, R.; Gomez, C. *Tetrahedron* **1990**, *46*, 7813.
4. Klement, I.; Rohlander, M.; Tucker, C. E.; Majid, T. N.; Knochel, P. *Tetrahedron* **1996**, *52*, 7201.
5. (a) Hanessian, S.; Kagotani, M. *Synthesis* **1987**, 409.
(b) Tilley, J. W.; Zawoiski, S. *J. Org. Chem.* **1998**, *53*, 386.
6. Spectroscopy compared to that of an authentic sample obtained from Aldrich.
7. Spectroscopy compared to that of an authentic sample obtained from Aldrich.